superlinear convergence造句
例句與造句
- Under mild conditions , we prove the global and superlinear convergence of the method
在較弱的條件下,得到了算法的全局收斂性及其超線性收斂性。 - A feasible sqp algorithm with superlinear convergence for inequality constrained optimization
不等式約束優(yōu)化一個(gè)具有超線性收斂的可行序列二次規(guī)劃算法 - Using the comparison principle , it is proved that the proposed method is of superlinear convergence
利用比較原理,間接證明該算法是一種具有超線性收斂性的近似牛頓法。 - Furthermore , the global and superlinear convergence of the shamanskii modification of the newton method with the new line search are proved under the weaker conditions than those in ref [ 10 ] ( i . e . ,
在本章中,我什1將邪a ? nans汕6修正牛頓法的迭代形式作了進(jìn)一步的改進(jìn),改進(jìn)后的sha 。 a 。 - Lc1 unconstrained optimization problem was discussed in the second chapter , giving a new trust region method and proving its global convergence and superlinear convergence under some mild conditions
給出了一個(gè)新的信賴域算法,并在一定的條件下證明了算法的全局收斂性和局部超線性收斂性。 - It's difficult to find superlinear convergence in a sentence. 用superlinear convergence造句挺難的
- We then develop a bfgs method for solving the nonsmooth equation . the method possess some descent property . under mild conditions , we establish the global and superlinear convergence of the proposed method
在此基礎(chǔ)上,我們提出一種單調(diào)下降的線性搜索,進(jìn)而提出求解該非光滑方程組的具有單調(diào)下降性的bfgs算法。 - The general shamanskii modification of the newton method is defined by the iteration and the global and superlinear convergence of the general shamanskii modification of the newton method are proved in this dissertation
我們不僅證明了改進(jìn)的sha一mansk燈修正牛頓法的全局收斂性,而且也證明該方法具有超線性收斂速度 - In chapter 2 . we give a class of new algorithms for nonlinear programming problems with linear constrained by combining the gradient projection method with non - quasi - newton method which was given in paper [ 2 ] . it ' s global convergence and the superlinear convergence are proved under suitable conditions
在第二章中我們將梯度投影與文[ 2 ]中的非擬牛頓法相結(jié)合,給出了求解線性約束非線性優(yōu)化問題的一類梯度投影非擬牛頓算法。 - In chapter 3 , we give a class of new algorithms with inexact search for nonlinear programming problems with linear constrained by combining the generalized projection method with non - quasi - newton method . it ' s global convergence and the superlinear convergence are proved under suitable conditions
新算法推廣了文[ 1 , 2 ]中的結(jié)果。在第三章中我們將廣義投影算法與非擬牛頓法相結(jié)合,給出了求解線性約束非線性優(yōu)化問題的一類廣義投影非擬牛頓算法。 - In the third chapter we discuss lc1 constrained optimization problem . to solve it , we turn it into nonsmooth equations , utilizing inexact theory we give an inexact generalized newton ' s method and under some mild conditions we prove that it is global convergence and superlinear convergence
首先將其約束問題的求解轉(zhuǎn)化為非光滑方程組的求解,然后利用不完全求解理論給出了一個(gè)非精確的廣義牛頓算法,在一定的條件下證明了算法的全局收斂性和局部超線性收斂性并給出了lc ~ 1非線性約束問題的收斂性條件。 - Because three systems of equations solved at each iteration have the same coefficients , so the ammount of computation are less than that of the existing sqp algorithms . under some common conditions ( such as the second order sufficient condition ) which are used in some references , we prove that the algorithm possesses not only global convergence , but also strong convergence and superlinear convergence
該算法在每次迭代時(shí)所需解的三個(gè)線性方程組具有相同的系數(shù),因此計(jì)算量要比現(xiàn)有的sqp方法有所減少;在與一些文獻(xiàn)平行的假設(shè)條件(如二階充分條件)下,論文證明了算法不僅具有全局收斂性,而且還具有強(qiáng)收斂性和超線性收斂性 - Using the conic function model local approximation , w . cdavidon ( 1980 ) proposed a class of iterative algorithms with modified matrix combining function value , furthermore under the theory d . c . sorensen has used local quadratic approximation method , then applying collinear scaling idea improving on the above algorithm and generalizing it , getting a class of collinear scaling algorithm , unifying former quasi - newton . in the paper , using local quadratic approximation method , the first , constructing the new collinear scaling gene , getting a class of the new collinear scaling algorithm with briefness and numerical stability , . , we discusses some properties of the algorithm and its local linear convergence , q - superlinear convergence and the whole convergence ; secondly we have made numerical experimentation and numerical analysis ; the last , we have done much discussion for collinear scaling idea and given the several new collinear scaling algorithm
本文的工作就是基于局部二次逼近原理,首先通過構(gòu)造新的共線調(diào)比因子,得到了一類新的更簡潔,數(shù)值穩(wěn)定性更好的共線調(diào)比算法,進(jìn)而我們給出了本共線調(diào)比算法的局部收斂性,全局收斂性以及算法q -超線性速度的理論證明;其次,用經(jīng)典的無約束優(yōu)化五大考核函數(shù)就本共線調(diào)比算法進(jìn)行了數(shù)值試驗(yàn)和數(shù)值分析;最后,就局部二次逼近思想,進(jìn)行共線調(diào)比算法思想進(jìn)行更廣泛的討論,給出了幾個(gè)新共線調(diào)比算法。 - In recent years , papers [ 1 , 6 , 11 , 12 , 13 , 14 ] give a class of projection quasi - newton algorithms by combining the projection methods and quasi - newton method which have the superlinear convergence . paper [ 2 ] gives a class of non - quasi - newton algorithms about unconstrained programming problems based on the modified non - quasi - newton equation
近年來,將求解無約束優(yōu)化問題的擬牛頓法與求解約束問題的投影類算法相結(jié)合,文[ 1 、 6 、 11 、 12 、 13 、 14 ]等給出了具有超線性收斂速度的投影類擬牛頓算法。